What’s wrong with Internet Protocol?

This post is excerpted from the IsoGrid Protocol Specification v0.220. If you’d like to skip ahead, check out the spec!

The goal of IP was simple: Create an interop-protocol to connect the world’s networks. In this regard, IP has seen fantastic success. However, it wasn’t designed with socioeconomic goals in mind. In this day and age, when much of global commerce seems to rely on IP, it’s tempting to think that “Anything can run on IP, can’t you solve <X> with an overlay network or a blockchain?” But this would be akin to asking “Why not build the grid of roads only on top of the hub-and-spoke railway network?” When you think about the goals of the IsoGrid, you’ll see that this is a ridiculous proposal. It’s reasonable to try to rely on the existing IP infrastructure in the early phases of building its successor: Like the railways connected the cities prior to interstate highway systems.

Below are the problems I see in TCP/IP, along with the succinct requirements for my proposed network protocol that overcomes these problems.

High and Unbounded Latency

IP switches have to decode the entire header of a packet and then lookup routing tables before the packet can be routed to the next switch. But it’s worse than that, with IP, there are no guarantees that a given packet will be routed within a certain amount of time, or even serviced at all. If 10 packets arrive on 10 different links at the same time, and all 10 have the same destination link, then some of the packets need to wait for their turn. If the switch in this case only has buffers for 8 packets, then the last 2 are simply dropped.

The IsoGrid must provide bounded latency, and must provide low latency even as the network scales up.

Wasteful Underused Links

The majority of the links that comprise the Internet run at less than 50% utilization. This is related to the same latency/buffering problem above: In order to have even reasonable latency and low levels of packet-loss, links must typically be at less than 50% utilization.

The IsoGrid must allow for 100% link utilization without any increase in latency on existing connections and without suffering congestive collapse.

Limited Node/Switch/Hop Counts

IP has limits on the number of switches, nodes, and hops that make it ill-suited to an “Internet-of-Everything”.

The IsoGrid must have no limits on the number of participating nodes or switches, and routes must be able to have an arbitrarily large number of hops.

Low Redundancy

Typically, most consumers and businesses have only a single link to the IP Internet. This is often because there is only one high-speed provider at a given location. But also, Internet links are mostly paid for by link bandwidth, rather than the actual bandwidth used. It becomes cost-prohibitive to pay for multiple under-utilized links. Finally, IP itself doesn’t have good support for multi-path.

The IsoGrid must promote a mesh topology, where it actually makes sense to have more than just one link.

Centralization of Power, and thus Wealth

With the IP Internet, Economies-of-Scale make massive centralized services cheaper than distributed services (even if similarly massive). These centralized services seem to leave little room for a healthy middle class.

With the IsoGrid, distributed services should be cheaper to provide than centralized services. Distributed services can spread the benefits of a growing economy more widely.

Choke-point Surveillance and Censorship

Because the Internet and the services running on it are so centralized, powerful governmental systems have the clear capability to surveil and/or censor it.

The IsoGrid must scale up to have no Choke-points or Check-Points: You should be able talk with your neighbors without permission from a central authority.

Vulnerable to Disaster

Major damage to a critical building in most major cities is likely to bring down IP Internet service in the region for weeks or months. War, terrorism, earthquakes, or coronal mass ejections could all completely bring down the Internet, knocking out both local and long distance communications, hindering recovery efforts.

The IsoGrid must not rely on central hubs.

Tragedy of the Commons

The Internet is a Commons, where everyone is expected to behave themselves or face removal from the network by network admins. This is expensive to police. The biggest example of this is how it costs practically zero for spammers to send comment and email spam.

The IsoGrid must not suffer from Tragedy of the Commons, it should rely on micro-payments in exchange for accepting requests.

Discussion is at Hacker News!